Carleman Estimate for Stochastic Parabolic Equations and Inverse Stochastic Parabolic Problems

نویسنده

  • Qi Lu
چکیده

In this paper, we establish a global Carleman estimate for stochastic parabolic equations. Based on this estimate, we solve two inverse problems for stochastic parabolic equations. One is concerned with a determination problem of the history of a stochastic heat process through the observation at the final time T , for which we obtain a conditional stability estimate. The other is an inverse source problem with observation on the lateral boundary. We derive the uniqueness of the source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique Continuation for Stochastic Parabolic Equations

This paper is devoted to a study of the unique continuation property for stochastic parabolic equations. Due to the adapted nature of solutions in the stochastic situation, classical approaches to treat the the unique continuation problem for deterministic equations do not work. Our method is based on a suitable partial Holmgren coordinate transform and a stochastic version of Carleman-type est...

متن کامل

Inverse problem for a parabolic system with two components by measurements of one component

We consider a 2×2 system of parabolic equations with first and zeroth coupling and establish a Carleman estimate by extra data of only one component without data of initial values. Then we apply the Carleman estimate to inverse problems of determining some or all of the coefficients by observations in an arbitrary subdomain over a time interval of only one component and data of two components a...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations

In arbitrary dimension, in the discrete setting of finite-differences we prove a Carleman estimate for a semi-discrete parabolic operator, in which the large parameter is connected to the mesh size. This estimate is applied for the derivation of a (relaxed) observability estimate, that yield some controlability results for semi-linear semi-discrete parabilic equations. Sub-linear and super-line...

متن کامل

Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and application to controllability

In the discrete setting of one-dimensional finite-differences we prove a Carleman estimate for a semi-discretization of the parabolic operator ∂t − ∂x(c∂x) where the diffusion coefficient c has a jump. As a consequence of this Carleman estimate, we deduce consistent nullcontrollability results for classes of semi-linear parabolic equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1107.5774  شماره 

صفحات  -

تاریخ انتشار 2011